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Abstract--The pressure distribution in vertical air-water mixture flows through venturis was investigated 
using area contraction ratios of 3.16 and 7.11 with variations in angles of convergence and divergence. The 
flow conditions were predominantly of the bubbly type and covered a range of gas volume fractions at the 
throat between 0.2 and 0.6. The one-dimensional momentum equation assuming isothermal flow with 
interphase relative motion was solved for the necessary relationship between pressure and area. An 
analysis was also developed to predict the pressure rise across a shock wave. Static pressure measurements 
obtained in eight venturi assemblies were compared with theoretical prediction and the results showed that 
the momentum equation assuming constant velocity ratio with properties normalized about the sonic throat 
pressure could account with fair accuracy for pressure in the converging passage of the venturis whilst 
downstream of the venturi throat the presence of a two-phase shock gave a good overall description of the 
steep pressure rise in supersonic flows. Departures from theory are accounted for in venturis with sharp 
contractions where three-dimensional flow effects gave rise to an appreciable transverse pressure gradient, a 
high velocity ratio and in some cases a vena contracta effect. 

1. INTRODUCTION 

Previous studies on two-phase flow through convergent-divergent nozzles were directed 
towards cases in which compressiblity effects of the mixture were predominant, such as the 
occurrence of critical flow to limit the discharge capacity. They dealt mainly with high quality 
droplet flows (Carofano & McManus 1%9, Smith 1972). The study of lower quality two- 
component gas-liquid flow, namely bubble flow, through a venturi has received less attention in 
the literature. Further, a large number of flow models assumed an homogeneous structure in 
which the phases are uniformly distributed and move with the same velocity (Tangren et al. 

1949, Campbell & Pitcher 1957). This facilitated the analysis but did not fully account for the 
actual dynamics of the flowing mixture. In the present work, the one-dimensional momentum 
equation in variable area flow is developed with allowance made for the relative velocity 
between the cocurrent phases. The theory is used to predict the pressure distribution along a 
number of venturi configurations. Like single-phase compressible flow, two-phase supersonic 
flow regions may exist in the diverging passage of a convergent--divergent nozzle, giving rise to 
a compression shock wave if the flow is suddenly decelerated. In recent years, this subject has 
been investigated by a number of authors (Witte 1969, Eddington 1970, Wijngaarden 1970, 1972) 
in which interphase relative motion was considered to be of significance in the shock wave 
characteristics. However, due to lack of experimental data, its effects have not been fully 
investigated. An analysis is given in this work to predict the pressure rise across a shock wave 
taking into account also the effect of relative velocity between the phases. 

2. THEORETICAL CONSIDERATIONS 

2.1 Momentum equation 

The two-phase mixture is assumed to undergo changes of  pressure and local void fract ion 

f rom their initial values but there is no mass transfer  be tween  the two phases.  The  liquid phase 

is assumed to have a constant  densi ty  pL whilst the gas densi ty  Pc is related to the local 
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pressure by a polytropic law with a compression index n. From other investigations (Davies 
1967, Eddington 1970) the flow can be considered to be isothermal (n = 1). However, the 
polytropic relation will be retained in the discussion for generality. 

The density of the gas phase is related to an initial reference condition denoted by a suffix 
zero by the equation 

/ p  ~l/n 

pc = o c o ~ /  

or [1] 

PC = PGoP lln ' 

The conservation of mass for each of the phases at two cross-sections of areas Ao and A 
gives: 

OfoPco U~oAo = Of Pc UcA [2] 

and 

(1 - Ofo)pLULoAo = (1 -- Of)pLULA [3] 

where of is the void fraction, Uc and UL are the cross sectional averages of gas and liquid 
phase velocities respectively. By introducing the velocity ratio 

S = rig [4] 
UL' 

[2] and [3] can be combined to give: 

Of ff-(l/n) 

ofo ~o(l - ao) + ofoP -¢I/') 
[5] 

It was shown by Davis (1971) that by ignoring interphase relative motion (i.e. S = 1) an 
expression for the local pressure as a function of area change could be obtained by direct 
integration of the momentum equation. In the following analysis it can be shown that if the 
velocity ratio, which in the general case is different from unity, remains constant then the basis 
relations proposed by Davis are still valid. However, if the velocity ratio is not constant, 
integration is possible only when suitable analytical expressions or empirical correlations are 
assumed for the variation of the velocity ratio (Thang 1976). 

The momentum balance of the two-phase mixture can be simply written as 

- d UG . . . .  d Ut dp [6 ]  
apoU6--~-+(1-a)pLOL dx - dx" 

It is noted from [4] that 

dUG dS sdUL '= U ~ +  dx dx 
[7] 

Thus [6] can be arranged in the following form: 

[(1- a)pL + OfpcS2] d(~UL2) + UL2Sap~ dS = -dP. [8] 
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If it is assumed that the velocity ratio is constant, [8] becomes 

2 1 2 [(1 - a)pL +otpaS ] d(~UL ) = - d p .  [9] 

Substituting for a in [5], [9] can be written as 

oo,0 +oooooSo ld(   0 ,,o, 
Po J 

By integrating both sides of [10], the following result is obtained: 

OLoflGoSo 2 + (I OtO)PL 
(UL 2 - U~o) = (1 - ao)(1 -/~) - n - ~ l  (/i 1-(1/") - 1). [11] 

2po 

From [2] and [4] the average liquid velocity is 

So a°[ o ] UL = U L O s 7  ( l -ao)+ao ,0  -"/"~ • [121 

Substituting for UL in [11] with S = So 

[ ( - ~ )  ] --" nao(ffl-O/.,_l)" aoP~oSo~+(1-aO)OL 2(1 _ ao + a0/7-(1/.~)2_ 1 U~o=(1-ao)(1-p)- -~-~_ 1 
2po 

By defining the dimensionless dynamic head factor Do as 

Do = aoPGo U~o + (1 - ao)pL U~o 
Po 

[13] becomes 

-2-D° [(~_~Of(l- ao + ao/~_(~/.))2_ 1] = (1 -  a o ) ( 1 - / ~ ) - n ~ l ( f f  ~-(I/")- 1) 

[131 

[14] 

- ~ [ ( - - ~ f ( 1 -  ao + ao/~-*) 2-  1] = (1 - ao)(1 - , 0 ) -  ao IntO. [16] 

Equations [15] and [16] give the necessary relationships between the local pressure ratio 
and the area ratio expressed in terms of known initial parameters ao and Do. Further 
simplifications of [15] and [16] can be made by relating the flow properties to those at the sonic 
point instead of an arbitrary reference condition (Davis 1971). It is thus necessary at this point 
to derive an expression for the speed of sound in the mixture. In a compressible medium, the 
speed of sound wave propagation is given by the following insentropic relationship 

MF Vol. 7, No. 2--E 

= ( ap ~"2 
a \ a - ~ /  " [171 

Under isothermal condition where the compression index n is unity, the solution of the 
momentum equation can be found by integrating [10] to give 

[151 
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The mixture density p= is defined as 
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p= = apG + (1 - a)pL. [18] 

By combining [18] with [5] 

Pmo ~ + So (I - ao) + ao~ -"/" [191 

where ~ is the mass flow ratio (mdmD. 
If S is a constant, 

tim_= 1 
P~o 1 - ao + a o ~  -(1/') " [20] 

Thus, using [20] in [17] 

( pO ~112( - _  \ / . . l+( I /n) \ l /2  

a = \-'~o~o/ \ I - a o  +aop °/"))(:~o ) . [21] 

In general the speed of sound in an homogeneous two-phase mixture is 

= ( np ~ "2 
a \a-p-~pm / [22] 

which can be reduced to the familiar form 

for a perfect gas when a = 1 and n = 3'- 

It was noted that the dimensionless dynamic head factor D which was defined previously as 

D = apcU2 + (1 - a)pLUL 2 [23] 
P 

would include the special case where the velocity ratio is unity. In this particular case, the mean 
mixture velocity U,~ is identical with both phase velocities Uo and UL thus giving 

Dn = pmUm2. [24] 
P 

It is proposed that by equating [23] and [24], a definition of the mixture velocity in the 
general case of flow with interphase relative motion may be made as follows: 

Umo : [ aoaUJ + (1 - a)pL UL2] ''2 
L P m  I [25] 

or  

(o.: U,.o = \ - ~ - /  • [261 
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The Mach number can now be defined as the ratio of the mixture velocity U,, to the 
velocity of sound “a” thus 

The question of defining a suitable Mach number for two-phase flow with interphase relative 
velocity has not been clearly resolved in the literature. This has caused ambiguity in such terms 
as subsonic and supersonic flows in some areas of two-phase flow, particularly in nozzle flows. 
It is clearly recognizable that in an homogeneous flow with no relative phase velocity a 
definition of Mach number based on an average mixture velocity will produce a Mach number 
of unity at the throat of a nozzle under critical flow situations. This can be seen as a logical 
extension of the criterion for flow choking in compressible single-phase flow. However, this 
same result cannot be obtained in two-phase flows with interphase relative motion if one 
maintains a definition of average mixture velocity based on a mass or volume flow rate basis. 
The definition of Mach number given by [27] is proposed to simplify the problem and to give a 
Mach number of unity at the throat of the venturi in two-phase flow with constant velocity 
ratio. This can be demonstrated by using [16] with the properties related to those at the throat 
(instead of those at the initial state) where the condition (dA/dp) = 0 holds, which leads to 
M* = 1 (*denotes sonic point condition). 

A simple relationship is now derived for the Mach number calculated for a flow with no 
relative velocity and the velocity ratio that would be present in the proposed constant velocity 
ratio model to make M equal to unity at the throat in critical flow condition. By defining the gas 
volume fraction /3 as 

where Q. and Qt are the gas and liquid volume flow rates respectively, it can be shown that for 
flow with no relative velocity, 

M2NS-s P 1t,s,+2 
1-p p A ' 

With constant velocity ratio assumption, the following relation is obtained: 

2 _ B l+cLSpLQL* MCSyqjSZ. 

Thus 

2 
- l+-cLS 

w + CL) 

1291 

[301 

[311 

or since 

WI 
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At the sonic throat in the model for flow with constant velocity ratio, the Mach number Mcs 

is equal to unity, the velocity ratio would thus assume the following value 

S = M * s  2 . [33] 

This relation can be used to determine the velocity ratio in a choked flow under the constant 
velocity ratio assumption. It is obvious that if S is greater than unity, the above equation 
implies that M* Ns is also greater than unity. 

From [27] if one assumes n = 1 then at the sonic condition (denoted by *) the following 
simple relation can be obtained 

D* =___1 a*" [34] 

Thus, the solution of the momentum equation [16] can be written as 

A* _ {1 + 2a*[(1 - a*)(l -/~*) - a* ln,6*]} 1/2 
- 1 - a* + a * :  *-~ [35] 

where properties are now referred to those at the sonic throat. Variation of the dimensionless 
pressure in terms of the throat area ratio is seen to be characterized by a single parameter, 
namely the sonic point void fraction a*. 

2.2 Compression shock wave 

As in single-phase compressible flow, the occurrence of a compression shock wave involves 
supersonic flow such as that in the diverging section of a venturi. The following analysis derives 
an expression for the pressure ratio on two sides of a shock with a view to determining whether 
two-phase shock wave did exist in the flow down-stream of a venturi contraction in this work. 

State 1 refers to conditions immediately upstream of a shock wave in a gas-liquid mixture 
whilst state 2 immediately follows the shock. The shock thickness is assumed to be small 
compared to the diameter of the flow channel so that the cross-sectional areas A~ and A2 can be 
considered equal. One also makes the usual assumptions that the mixture behaves isothermally and 

the thermal energy equation can thus be ignored. 
A force balance across the shock can be written as 

= Ot2PG2UG2 + (1 - OI2)pLUL2 + P2 a,pal U2t + (1 - al)pLU2L1 + Pl 2 2 [36] 

which can be arranged in the following form 

~-~l 2 = ( 1  + D O / E 1  +a2PG2U2G2+(1--Ct2)pLU22]p2 [37] 

where 

Dj = a!paI U~, + (I - al)pLU21 
Pl 

Continuity requirement for the two phases gives 

a~po~ Uo, = a2pa~Uc2 [38] 

( l  -- ~1) ULI = (1 -- ~2) UL2 • [39] 
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By combining [38] and [39] in [37] one obtains a quadratic equation in (P2/PO, the pressure 

ratio across the shock 

_[  tzS2+~][p2~. ,.,S~/zS2+l 
(p2~2 1 + h i -  O ' ( l -  ° ' l ) ~ S , +  ~pl ] -t °f 1//152 ~S--'~ ~ : 0 "  
\Pt /  

[40] 

2.2.1 Constant velocity ratio across the shock. Since S~ = $2 the velocity ratio terms 
disappear from [40] and this becomes 

(p2)2-(l +a,OO~l+alOl=O. [41] 
Pl/ 

The non-trivial solution to the above equation is 

P~ = atD1 [42] 
Pl 

or from [27] 

P~ = M1 ~ . [43] 
Pl 

The above result is consistent with that derived by Campbell & Pitcher (1975) in the special 
case where the velocity ratio is unity throughout the flow. To calculate the Mach number at 
state 2 after the shock, the void fraction and the dynamic head factor can be related to those in 
front of the shock by the following relations 

a2 = 1/[1 + (1 -- al)D1] [44] 

D2 = [1 + (1 - al)D1]lt~lDl. [45] 

Hence 

ot2D2 = 1/alDl [46] 

which shows that 

1 
M2 = 77-. [47] 

lVl 1 

This result was also obtained by Eddington (1970) but for the more restricted condition of 
S 2 = S I = I .  

2.2.2 Different velocity ratios across the shock. Note that this case does not impose any 
condition on the nature of the velocity ratio on two sides of the shock. The velocity ratio may 
be a variable or may remain constant upstream and downstream of the shock, but its local 
values at states I and 2 are assumed to be different due to the presence of the shock as a finite 
flow discontinuity. 

The solution to [40] gives: 

- -=~l  _ _aXD tzS2+l P2 l + D i  (1 
Pl - -  iJ I~----~l+l 

~ f ( [  /zS2+ 1] 2 Sl/£52 ÷ + . I)}. [48] 
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If ~ is ignored, 

p,P-'~2 = ~ [ l + a'Dl + i ( ( l + azD')2 - 4ct'Dl-~2) ] " [49] 

The positive root is selected to ensure that (P2[P l )  = atDI at S.,/S~ = 1 for cases where a~D~ > 1 
(i.e. supersonic flow upstream of the shock). The negative root gives (P2/P~) = 1 (trivial solution) 
in this case and gives (P2/PO < 1 for ($2/S1) > 1, which is clearly physically unrealistic. 

Figure 1 specifies the regions of possible solution for [49]. For the case ($2/S~)> 1, the 
region of possible solution is defined by the following upper and lower bounds which 
correspond to the case where ($2/S0--," ~ and (SdSO = 1 respectively: 

1 m a x  

The other case where (SJSI) < 1 is normally expected to occur as there is tendency for the 
less dense gas phase to slip in the region preceding a shock due to a strong expansion there. 
However, in the subsonic flow following the shock, the mixture will decelerate considerably 
with a possible change in the bubble structure and the relative motion of the gas phase with 
respect to the liquid phase can be considered quite small. The upper bound of the pressure ratio 
is 

The lower bound of the pressure ratio corresponds to the smallest value of (SJSI) for which 
the quantity in the square root of [49] does not become negative, 

$2 = 4ajDi 
S1 (1 + o~lDl) 2" [501 

ot 1 D 1 
Figure 1. Pressure rise across a shock wave. 

7 
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In this case, 

(1 +a lDO.  [511 

Using [51] it can be shown that 

4aiD, Sl 
a2D2 = (1 +alDO 2" S--22 

or from [50] 

a2D2 = 1 . [52] 

Thus the line representing the lower bound for the pressure ratio also represents the 
condition for which a2D2 = 1. If it is assumed that $2 remains constant after the shock the 
above equation shows that Me = 1. Any point lying below this line in figure 1 would result in 
ME > 1 and this has been shown by Witte (1969) for example to be impossible for a shock. 

In summary, since it is generally expected that when interphase relative motion is present in 
the flow it will be greater upstream of the shock than downstream, the results of figure 1 show 
that for flows with the same Mach number at the shock, an effect of this decrease in the 
velocity ratio across the shock is to reduce the pressure ratio compared with the case when B 
remains constant. 

3. EXPERIMENTAL EQUIPMENT 

The test venturis were bored out of Perspex cylindrical blocks. Each venturi assembly 
consists of three parts: the conical convergent channel, the cylindrical throat and the conical 
divergent channel. A total of eight venturi assemblies were used. The relevant geometrical 
features are given in table 1. The area contraction ratio for four venturis of series A is 3.16 and 
that for four venturis of series B is 7.11. 

Table 1. Geometric details for venturi configurations 

• ,t / r  

d* d o £* £T Oc Od Ao/A ~ 
Venturi (ram) (mm) (ram) (ram) ( o ) ( o ) 

A1 28.57 50.8 14.29 147.64 14.04 7.12 3.16 
A2 28.57 50.8 14.29 103.19 14.04 14.04 3.16 
A3 28.57 50.8 14.29 114.30 45 7.12 3.16 
A4 28.57 50.8 14.29 69.85 45 14.04 3.16 

B1 19.05 50.8 5.92 200.02 14.04 7.12 7.11 
B2 19.05 50.8 5.92 136.52 14.04 14.04 7.11 
B3 19.05 50.8 5.92 152.40 45 7.12 7.11 
B4 19.05 50.8 5.92 88.90 45 14.04 7.11 
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Measured air and water flow rates were fed separately into a multi-jet nozzle assembly 
where they were mixed in a contracting cone by turbulence generated by the jets. Under most 
conditions observed in this investigation a fairly uniform mixture was produced (Thang & Davis 
1979). The mixture was introduced into a vertical clear Perspex pipe of 50.8 mm i.d. upstream 
of the venturi. This settling length is 25 diameters long. On leaving the venturi, the flow passed 
through an additional main pipe 12 diameters long and was discharged through a return bend to 
the laboratory main sump. 

Static pressure was measured through small wall tappings by a calibrated mercury 
manometer for vacuum and gauge pressure up to approx. 200 kPa and by a standard precision 
gauge for higher pressure. Pressure fluctuations in flows approaching slugging conditions, 
especially at the throat and diverging channel caused variations in pressure readings of up to 3 
per cent. 

4. INTERPRETATION OF PRESSURE MEASUREMENTS 
4.1 Pressure distribution across venturi 

Pressure measured along the venturis in 9 flow conditions (table 2) can be normalized on 
inlet as well as throat conditions to compare with prediction from theory. Inlet normalization is 
used for both subsonic and supersonic flows whilst throat normalization is used for flows which 
became sonic at the throat. 

4.1.1 Normalization on inlet conditions. Equation [16] applies to the general case of flows 
having a constant velocity ratio, although the latter is initially assumed to be unity in evaluating 
ao and Do for each flow condition. Figure 2 shows typical results for venturi A1 (larger throat) 
and B1 (smaller throat). For flow conditions 1-5 in A1 and 1, 2 for B1 the Mach number 
calculated from wall pressure is less than unity at the geometric throat and as a result, the 
prediction of pressure variation in the divergent passage for supersonic flows by the lower 
halves of the theoretical curves is not applicable to these flows. 

In general, there is moderate agreement between theory and experiment in the converging 
passage. The pressure of the flow immediately before the throat is higher than predicted whilst 
the opposite is true for the pressure at the throat itself. This is due to three-dimensional flow 
effects caused by the sharp angle of the converging passage. These effects are most noticeable 
in the results of venturis which have a short converging channel and a large inlet angle of 90 °. 

Table 2. Typical flow condition data./3': Gas volume fraction at the throat 

Venturi Flow Condition m G x l0 3 m L Pinlet 13" U m 
(kg/s) (kWs) (KPa) (m/s ) 

A1 

1 1.49 4.131 127.1 0.236 8.45 
2 2.78 4.131 132.07 0.364 10.14 
3 4.07 4.131 136.6 0.455 11.84 

4 2.36 7.156 164.7 0.272 15.34 
5 5.92 7.156 201.6 0.437 19.84 
6 11.36 7.156 235.9 0.545 24.54 

7 3.63 10.120 258.7 0.282 22.00 
8 11.04 10.120 348.6 0.415 27.01 
9 22.97 10.120 441.9 0.506 31.97 

BI 

1 1.00 2.921 153.6 0.280 14.26 
2 2.24 2.921 179.5 0.418 17.63 
3 4.04 2.921 201.8 0.544 22.54 

4 1.48 4.131 231.3 0.292 20.52 
5 2.76 4.131 274.3 0.358 22.60 
6 5.54 4.131 333.1 0.448 26.32 

7 5.92 4.771 401.4 0.403 28.08 
8 11.71 4.771 500.6 0.491 32.92 
9 19.53 4.771 602.9 0.554 37.54 
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Figure 2. Pressure variation normalized on inlet conditions: 

(a) Venturi AI (b) Venturi BI 

Flow oL 0 Flow ol 0 
O 1 0.194 © 1 0.159 
x 2 0.302 x 2 0.267 
A 3 0.380 A 3 0.369 
~7 4 0.145 S7 4 0.115 
[] 5 0.257 [] 5 0.171 
Y 6 0.355 Y 6 0.254 
O 7 0.105 O 7 0.208 
Y 8 0.209 Y 8 0.294 
+ 9 0.303 + 9 0.366 

The flow near the wall in following the large directional change presented by the inlet wall 
produces a pressure gradient in the transverse direction. The presence of the radial pressure 
gradient will cause the pressure measured at the wall to be higher than at the centre of the flow. 
By similar reasoning at the throat, as the flow streamlines change their curvature due to the 
sharp convex corner at the throat inlet, pressure at the wall will be lower than in the central part 
of the flow. The net result gives a much higher pressure gradient than that would have been 
predicted by one-dimensional theory assuming uniform pressure across the flow section. In the 
divergent passage, the poor pressure recovery was caused by the occurrence of flow separation. 
For flows with the same water flow rates, increasing the air flow rates aggravates flow 
separation after the throat and causes greater losses. 
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In other flow conditions not mentioned above, theory predicts a Mach number in excess of 
unity at the throat and in the divergent passage. Thus the flows are expected to follow the part 
of the curve predicted in the divergent channel for supersonic flows. However, it appears that 
there is not sufficient overall pressure differential for most flows to sustain supersonic flow. As 
a result, pressure starts to rise early in the divergent passage which in compressible flow will 
give rise to a shock. In the work by Muir & Eichhorn (1963, 1967) who reported shock wave in 
a convergent-divergent nozzle, isothermal flow theory also predicted lower pressure than 
experimental values in the divergent passage for their flow conditions with throat void fractions 
between 0.10 and 0.33. In the present work, it was not possible to directly observe any shock 
wave in the divergent passage or in the constant area tailpipe. However, the high pressure rise 
observed in these supersonic flows will be discussed in section 4.2. 

From figure 2 it is also seen that theory predicts a larger throat size than the true throat for a 
number of flow cases, especially for flows in the higher range of void fraction c~* in venturis AI 
and B1. The existence of interphase relative motion in the actual flow situation may be partly 
responsible for the above discrepancy between the one-dimensional theory and experimental 
results. In a flow having relative velocity, the void fraction ao will be less than the gas volume 
fraction/30 if the velocity ratio S exceeds unity. As a result, the flow will generally need to 
accelerate further to reach sonic condition than in the case without relative motion. Given a 
fixed initial pressure Po, this may be accomplished by either a more rapid pressure drop or by a 
smaller throat size. Since the pressure gradient along the convergent channel is used mainly to 
accelerate the liquid phase which makes up the bulk of the mass of the mixture, the pressure 
gradient required will be less in the case of flow with relative velocity because the velocity of 
the liquid phase is reduced in this case. To satisfy momentum conservation, it is thus not 
possible to have a larger pressure gradient in flows with S > 1. It would then be reasonable to 
expect that the flow will need a smaller throat to accelerate to critical conditions. This then 
provides the necessary correction on the predicted throat area and brings it closer to the actual 
value. Figure 3 illustrates the effect of relative velocity on the prediction of the sonic throat size 
for one supersonic flow condition of venturis A1 and B1. The agreement between predicted and 
real throat area improves with increases in the velocity ratio. In figure 3, it is also possible to 
observe the decrease in the pressure gradient along the flow as the velocity ratio assumes higher 
values for a fixed venturi geometry. Void probe measurements (Thang & Davis 1979) have 
shown that the velocity ratios at the throat of venturis A1 and B1 are greater than unity 
(between 1.05 and 1.30) and the curves of figure 3 demonstrate that the effect of velocity ratio 
on pressure distribution is in general agreement with the previous observations of velocity ratio 
under similar flow conditions. It is thus clear that the existence of phase relative motion with 
S > 1 can to a certain extent reconcile the discrepancies between one-dimensional theory and 
experimental observations. This point will be discussed more fully using the actual velocity 
ratios obtained from void probe measurements in section 4.1.2. 

Static pressure probes were used to check the pressure at the centre line of the venturi 
contraction to determine the extent of three-dimensional flow effects. The measurements in 
venturis of both throat sizes showed that in all cases the pressure at the centreline is higher 
than at the wall. The difference is particularly high for venturis with a large convergence angle. 
This is expected as the wall suction effect of the liquid phase will be more severe for sharper 
inlet passages as was shown in the earlier void probe study (Thang & Davis 1979). However, as 
the gas content of the mixture is increased, the effect of suction becomes less pronounced and 
the transverse pressure gradient is smaller. The results as shown in table 3 illustrate these 
trends. Figure 4 compares theory and experiment using the wall pressure p* and the centreline 
pressure p* in two separate cases. The predicted dimensionless throat pressure (P*/Po)PRE 
which is obtained from [16] is in closer agreement with experimental results when the centreline 

throat pressure is used. 
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Figure 3. Effect of non-unity velocity ratio on pressure variation: (a) venturi AI, (b) venturi BI. 

4.1.2 Normalization on sonic throat conditions. From [38] the pressure variation with 
respect to area change is characterized by the void fraction at the sonic throat a* which in turn 
is dependent upon the velocity ratio and the gas volume fraction at the throat. The velocity 
ratio is assumed to be constant and its value predicted by [36]. These values are compared with 
those measured from a void probe at the venturi throat (Thang & Davis 1979) for a number of 

Table 3. Comparison of pressure measured at the wall and centre line of the throat in two venturis 

Venturl Flow Condition ~0 P_~w P__cc (Pc - Pwl~ 
po po / ' - - ~ J  ~ 

AI 

1 0.194 0.779 0.786 0.9 
2 0.302 0.755 0.767 1.6 
3 0.380 0.735 0.750 2.0 
4 0.145 0.454 0.487 6.8 

5 0.275 0.447 0.482 7.3 
6 0.355 0.460 0.496 7.2 

7 0.105 0.300 0.339 12.2 
8 0.209 0.374 0.409 8.5 

9 0.303 0.425 0.461 7.8 

A4 

I 0.180 0.686 0.753 8.9 
2 0.287 0.662 0.735 9.9 
3 0.349 0.647 0.722 10.4 

4 0.123 0.327 0.476 31.3 
5 0.235 0.330 0.468 29.5 
6 0.334 0.380 0.490 22.4 
7 0.091 0.118 0.339 65.2 
8 0.190 0.241 0.407 40.8 

9 0.282 0.323 0.451 28.4 
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Figure 4. Comparison between experimental and predicted throat pressure assuming unity velocity ratio: 
(a) wall position, (b) centre-line position. 

flow conditions. Although the velocity ratio data is limited, the trends in velocity ratio for flows 
ranging in mean throat void fraction between 0.14 and 0.47 and gas velocity between 9 and 
33 m/s may be considered broadly representative of other flow conditions in the same venturi 
geometry. Table 4 summarizes the available velocity ratios measured at the throat of four 
venturis. The normalized results using the centreline throat are presented in figures 5(a) and 
5(b). The corresponding velocity ratios calculated from [36] are also given for all the applicable 
flow conditions in these two figures. It is seen that these values are fairly close to unity but 
compare favourably with void probe results in table 4, the discrepancy becoming more 
noticeable in venturis with a large inlet angle (A4 and B4). Figure 6 compares the experimental 
inlet pressure normalized about the throat value (Po/p*) with that predicted by the model using 

Table 4. Velocity ratio values from void probe measurements at the throat of four venturis 

FLOW CONDITION 

Venturi i 3 4 6 7 9 

AI 

A4 

BI 

B4 

1.O9 1.01 I. 12 I.O9 

1.57 1.41 1.49 1.35 

1.28 1.04 1.27 1.18 

1.52 1.49 1.47 1.58 

1.09 1.03 
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Figure 5. Pressure variation normalized on sonic throat conditions: (a) series A, (b) series B. 

a constant velocity ratio (given in figures 5a and 5b). Since Po is least influenced by three- 
dimensional flow effects, experimental results agree with the predicted values to within 9.6 per 
cent although most data points fit well within a - 5 per cent scatter band. 

In venturis A1, A2 and B1, B2 with a more gradual inlet angle, the discrepancy between 
theory and experiment may be caused by normalizing about a rather high pressure at the throat. 
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The pressure is now normalized about the throat wall value and the results for venturis B1 and 
B2 are shown in figure 7(a) and better overall agreement is observed. It can thus be concluded 
that in venturis with a gradual rate of area contraction, normalization about the wall throat 
pressure gives acceptable agreement with one-dimensional constant velocity ratio theory and 
small discrepancies could be due to variation of pressure across the section. 

In venturis B3 and B4 which have an identical convergent section and inlet angle of 90 °, 
normalization about centreline throat pressure still gives higher pressure ratios than predicted in 
the convergent passage (figure 5b). Using the constant velocity ratio model, the higher pressure 
profiles as shown by the experimental data entail a smaller void fraction at the throat than 
predicted. For the same measured throat pressure, this requires a higher velocity ratio as also 
suggested by the experimental void probe values at the throat (table 4). From [33] a higher 
velocity ratio means that the Mach number M*s will increase and this can be achieved by a 
higher mixture velocity at the throat for the same pressure and mass flow rates. The latter 
suggests that the flows in venturis B3 and B4 may exhibit a vena contracta which reduces the 
cross-sectional flow area at the throat. Void probe measurement in flow conditions 1 and 4 of 
venturi B4 at the throat has confirmed the presence of a vena contracta (Thang & Davis 1979). 

A qualitative estimate of the effect of a vena contracta on the pressure profile can be 
obtained by assuming a smaller flow cross section. On the basis of the void probe data, it is 
assumed that a reduction of 10 per cent in the area occurs in all flow conditions of venturis B3 
and B4 and pressure normalization is made about the new throat condition. The results are 
shown in figure 7(b) and better agreement in the convergent passage is observed. The predicted 
velocity ratios in these cases (between 1.23 and 1.47) are not excessive compared with the 
measured velocity ratios in venturi B4 between 1.47 and 1.58 (table 4). However, vena contracta 
may not be the only effect which accounts for the high pressure profiles in venturis B3 and B4. 
Appreciable frictional losses in the sharp contraction of these venturis may give rise to a higher 
pressure drop than predicted assuming no energy dissipation. Except for a narrow region 
immediately after the throat, one dimensional theory does not predict favourably the pressure 
distribution in the divergent passage of all venturis (figures 5a and 5b) and none of the 
corrections for velocity ratio, transverse pressure gradient or vena contracta effects will resolve 
the discrepancies in the divergent passage. 
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Figure 7. Normalization on throat pressure: (a) measured at the wall, (b) measured on centre-line with 
effect of a vena contracta. 

4.2 Pressure rise downstream of venturis 
Figure 8 shows typical pressure distribution downstream of the venturi throat in venturis A1 

and B 1. In venturis having identical diffusers, increases in the gas volume fraction and/or mass 
flux at the throat resulted in longer recovery distance in the tailpipe. Venturis with larger 
divergence angles generally resulted somewhat unexpectedly in more pressure rise in the 
tailpipe and longer recovery distance for same flow conditions. These results agreed with those 
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Figure 8. Pressure rise downstream of venturi throat: (a) venturi AI, (b) venturi BI (numbers indicate flow 
conditions). 

of Hench & Johnston (1972) in different diffuser geometry and flow parameters from the 
present work. 

In all supersonic flow conditions investigated in the previous section, a strong pressure rise 
was recorded in the divergent section of the venturis and might continue for a considerable 
distance in the tailpipe before a peak is reached. Since the flow was supersonic at the point 
where minimum pressure occurs and subsonic at the peak of the pressure rise profile, the 
pressure rise observed might suggest that a phenomenon similar to a two-phase shock may be 
present. By denoting Pz the minimum pressure and P2 the maximum pressure further down- 
stream, the ratio (P2/PO can be compared with theoretically predicted values for a shock. Figure 
9(a) compares these respective values assuming unity velocity ratio. Those data points 
representing conditions where Mach numbers were not substantially greater than unity showed 
closer agreement with theory. A more realistic comparison was made in figure 9(b) where best 
estimates for the velocity ratio obtained from void probe measurements (Thang & Davis 1979) 
were used in predicting the pressure rise. The better agreement observed here indicates that 
phase relative velocity has a significant effect on the pressure ratio across a shock. 

The shock wave analysis in section 2.2 does not take into account the effect of area change 
whilst in practice the flow paths between p, and P2 produces an increase in area. However, the 
flow was observed to separate from the wall in the divergent passage (Thang & Davis 1979) and 
it is not therefore expected that the pressure rise component due to subsonic diffusion following 
the shock would be realized. This was confirmed by calculations on the overall pressure rise 
including an ideal diffusion following the shock which gave values between 25 and 60 per cent 
in excess of the measured pressure rise. Thus it appears that the subsonic diffusion pressure 
rise was not achieved, and that the tailpipe pressure rise was well accounted for on the basis of 
a shock wave alone taking account of measured velocity ratio changes between the throat and 
tailpipe. 

5. CONCLUSIONS 

Relations for the conservation of mass and momentum were applied to a bubbly gas-liquid 
flow to predict the pressure change in variable area flow and the overall pressure rise across a 
compression shock wave. The flow considered is assumed to undergo isothermal change of 
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Figure 9. Pressure rise across two-phase shocks: (a) flows assumed to have S= 1; (b) flows with S 
accounted for (numbers indicate flow conditions). 

pressure and the relative phase velocity term is accounted for. By assuming that the velocity 
ratio remains constant along the flow path, an expresssion for local pressure as a function of 
area change could be obtained by direct integration along the pipe length. Static pressure 
measurements were made in eight venturi configurations for comparison with theoretical 
prediction. In general, it was shown that in venturis with a sharp contraction three-dimensional 
flow effects caused appreciable discrepancies in measured wall pressures whilst in venturis with 
a moderate contraction, the wall pressure in the convergent passage could be predicted with a 
fair accuracy using the one-dimensional model assuming constant velocity ratio. In supersonic 
flows in the divergent passage, a steep pressure rise was observed which suggested the presence 
of a two-phase shock wave. Using values of velocity ratios obtained from void probe 
measurements, the pressure rise could be predicted to within 20 per cent of the actual values. In 
recognizing that the scatter in the results was due to the fact that the real shock was not thin 
and took place in an enlarging passage with additional frictional losses caused by flow 
separation, it was concluded that the presence of a shock wave gave an acceptable overall 
description of the pressure rise in the diffuser. 
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